

Topics plan		
Partner organization	University of Novi Sad	
Course	Programming 1	
Lesson title	Combinatorics: Variations without repetitions, con without repetitions	nbinations with and
Learning objectives	 Students will understand how to generate all the variations of the given set without repetitions. Students will understand how to generate all the combinations with repetitions of the given set of numbers of given length k ∈ N. Students will understand how to generate all the combinations without repetitions of the given set of numbers of given length k ∈ N. Students will understand how to generate all the combinations without repetitions of the given set of numbers of given length k ∈ N. Students will understand how to implement the methods in Python programming language. Students will understand how to apply the algorithms in solving similar combinatorial problems. 	Methodology Modeling X Collaborative learning Project based learning X Problem based learning Strategies/Activities Graphic Organizer Think/Pair/Share Discussion questions Assessment for learning X Observations X Conversations X Conversations Work sample Conference Check list Diagnostics
Aim of the lecture / Description of the practical problem	The aim of the lecture is to make students able to use Python in solving combinatorial problem, with visual solutions. As a practical problem, the lecturer poses several questions related to the applications of combinatorial methods in real life situations.	
Previous knowledge assumed: Lecture	 Elementary programming skills in Python. Basics of Combinatorics. In the introduction, we give basic examples of 	Assessment as learning X Self-assessment
	the usage of recursion, repeat what was taught in the previous lesson, and repeat the connection between recursive formula in mathematics, with application to natural problems in biology and how we solve it	 Peer-assessment Presentation Graphic Organizer Homework

through computers (STEAM).	Assessment of
We continue with recursive combinatorial	learning
problems that can be easily implemented in	X Test
Python:	🗆 Quiz
1. Variations without repetitions of length k	□Presentation
of a given set with n elemenata, S_n , is	
any ordered k-tuple of distinct elements	□Published work
from that set. For the set we take	
$\{0, 1, \dots, n-1\}$. To be able to generate	
the variations, we use the similar	
algorithm to the one for generating all	
the permutations, but we will exchange	
only the first k elements of the array with	
all the others, after we will have the	
variation on the first k positions in the	
array. We will use the separate function	
for writing the first k elements of the	
variation. In all calls, the parameters n	
and k will have their initial value.	
import numpy as np	
def ispisi(niz, k):	
for i in range(k):	
<pre>print(niz[i], end=" ")</pre>	
print()	
<pre>def zameni(niz, a, b): niz[a], niz[b] = niz[b], niz[a]</pre>	
def vbp(niz, n, k, m):	
if m == k:	
ispisi(niz, k)	
else: for i in range(m, n):	
zameni(niz, m, i)	
vbp(niz, n, k, m + 1) zameni(niz, m, i)	
, _, _, _,	
n = 4	
k = 2	
niz = np.arange(n)	
vbp(niz, n, k, 0)	
2. The combinations with repetitions of	
length k , of a given set with n elements,	
S_n , is any multiset with exactly k, not	
	L

necessarily distinct, elements of that set.
For the set we use $\{0, 1,, n-1\}$.
Having in mind that the order of the
elements in the combinations is not
important, and we want to place them in
an array, we place them in
nondecreasing order. To be able to go
through all such combinations, we use
again the recursion. If $n > 1$, all the
combinations with repetitions of the set
$\{0, 1, \dots, n-1\}$ of length k are generated
in a way that we first generate all the
combinations with repetitions of the set
$\{0, 1,, n - 1\}$ of length $k - 1$ and to all
of them we add the element $n-1$, and
then, we generate all the combinations
with repetitions of the set $\{0, 1, \dots, n-2\}$
of length k. If $n = 1$, only the first option
is taken into consideration.
import numpu of no
import numpy as np
def ksp(niz, n, k):
if k == 0:
print(niz)
else: niz[k - 1] = n - 1
ksp(niz, n, k - 1)
if n > 1: ksp(niz, n - 1, k)
$K_{SP}(112, 11 - 1, K)$
n - 2
n = 3 k = 4
<pre>niz = np.empty(k, int) here(niz = np.k)</pre>
ksp(niz, n, k)
3. Combinations without repetitions of a
given set of n elements, S_n , of length k ,
is any subset of that set with exactly k
elemenats. We take $\{0, 1, \dots, n-1\}$ to
be our set of interest. As with the
combinations with repetitions, the order
of the elements is not important, and we
want to place them into an array, we
place them in an increasing order (as no
repetitions are allowed). To be able to

	do that, we use the recursion. If $n > k$, we generate all the combinations without repetitions $\{0, 1,, n-1\}$ of length k in such a way that we first generate all the combinations without repetitions of the set $\{0, 1,, n-2\}$ of length $k - 1$ and then add element $n - 1$ to all of them. After that we generate all the combinations without repetitions of set $\{0, 1,, n-2\}$ of length k . If $n = k$, only the first option can be applied, as no element can be skipped. import numpy as np def kbp(niz, n, k): if $k = 0$: print(niz) else: niz[k - 1] = n - 1 kbp(niz, n - 1, k - 1) if $n > k$: kbp(niz, n - 1, k) n = 6 k = 4 niz = np.empty(k, int) kbp(niz, n, k)	
Action	The demonstration of power of Python in solving the combinatorial problems and visualization.	
Materials / equipment / digital tools / software	Computer, electronic whiteboard, PyCharm software	
Reflections and next steps		

Next steps				
Meri Siehs				
Since this approach was successfully implemented and was well received, the next steps include implementing other parts of the curriculum using the strategies devised for the pilot lecture.				
References				
In Apendix: Photographs, Lists of students, Test, questionare				