

Topics plan

Partner
organization

University of Novi Sad

Course Programming 1

Lesson title

Combinatorics: Splitting the numbers into sum, variations with repetitions,

permutations

Learning
objectives

 Students will understand the methods of
splitting the number into the sum of the

k numbers, for given .

 Students will understand how to
generate all the variations of the given
set with repetitions.

 Students will understand how to
generate all the permutations of the
given set.

 Students will understand how to
implement the methods in Python
programming language.

 Students will understand how to apply
the algorithms in solving similar
combinatorial problems.

Methodology

☐Modeling

X Collaborative

learning

☐Project based learning

X Problem based
learning

Strategies/Activities

☐Graphic Organizer

☐Think/Pair/Share

☐Discussion questions

Assessment for
learning

X Observations

X Conversations

☐Work sample

☐Conference

☐Check list

☐Diagnostics

Assessment as
learning

X Self-assessment

☐Peer-assessment

☐Presentation

☐Graphic Organizer

☐Homework

Aim of the
lecture /
Description of
the practical
problem

The aim of the lecture is to make students able
to use Python in solving combinatorial problem,
with visual solutions.

As a practical problem, the lecturer poses
several questions related to the applications of
combinatorial methods in real life situations.

Previous
knowledge
assumed:

 Elementary programming skills in
Python.

 Basics of Combinatorics.

Lecture

In the introduction, we give basic examples of
the usage of recursion, and the connection
between recursive formula in mathematics, with
application to natural problems in biology and
how we solve it through computers (STEAM).
As the starting example, we use Fibonacci
sequence, and relate it to the golden ratio, and
give an example where it can be found.

We continue with recursive combinatorial
problems that can be easily implemented in
Python:

1. splitting the given number as the sum of
non-negative integers, where we use
the recursive description of the structure

 , where and
are given, that for we can use any
of the numbers , and the rest
forms the splitting of the number
into numbers.
We write the following code in Python,
after which we give some further examples,
like not knowing the number of the
summands in advance, but they have to be
positive integers, and some others.

import numpy as np

def ispisi_sabirke(sabirci):
 print(sabirci[0], end="")
 for i in range(1, len(sabirci)):
 print(" + {0}".format(sabirci[i]),
end="")
 print()

def razbij_u_zbir(sabirci, s, k):
 if k == 1:
 sabirci[0] = s
 ispisi_sabirke(sabirci)
 else:
 for i in range(s+1):
 sabirci[k - 1] = i
 razbij_u_zbir(sabirci, s - i, k -

Assessment of
learning

X Test

☐ Quiz

☐Presentation

☐Project

☐Published work

1)

k = 3
s = 4
sabirci = np.empty(k, int)
razbij_u_zbir(sabirci, s, k)

2. Next, we consider the variations with

repetition of length , of the given set of
elements, , which is the ordered -tuple
of the elements of that set. For the set we
take To be able to
generate all the variations with repetitions,
we use the recursive description of the
structure: the last element can be any
element of the given set, and before this
element we can put any variation with
repetition of the set of
length .
In Python, the following code executes the
aforementioned.

import numpy as np

def vsp(niz, n, k):
 if k == 0:
 print(niz)
 else:
 for i in range(n):
 niz[k - 1] = i
 vsp(niz, n, k - 1)

n = 2
k = 4
niz = np.empty(k, int)
vsp(niz, n, k)

3. Lastly, we consider all the permutations of

the given set with elements, , is any
 tuple of different elements from that
set. We start with the set
To be able to go through all the
permutations, we use the recursive
description of this structure: the first
element can be any element of the given
set, after which we can place any
permutation of the remaining elements. In
Python, this looks as follows.

import numpy as np

def zameni(niz, a, b):
 niz[a], niz[b] = niz[b], niz[a]

def per(niz, n, m):
 if m == n:
 print(niz)
 else:
 for i in range(m, n):
 zameni(niz, m, i)
 per(niz, n, m + 1)
 zameni(niz, m, i)

n = 4
niz = np.arange(n)
per(niz, n, 0)

Action The demonstration of power of Python in
solving the combinatorial problems and
visualization.

Materials /
equipment /
digital tools /
software

Computer, electronic whiteboard, PyCharm
software

Reflections and next steps

Reflections

The attendance was average due to the fact
that we were working under certain
epidemiological restrictions; the feedback
was positive; the results of the tests show
that the students have benefited from the
materials and equipmebt used to deliver the
lecture

Next steps

Since this approach was successfully
implemented and was well received, the next
steps include implementing other parts of the
curriculum using the strategies devised for
the pilot lecture.

References

In Appendix:
Photographs, Lists of students, Test, questionare

