Co-funded by the Erasmus+ Programme of the European Union

Topics plan

Partner organization	University of Novi Sad	
Course	Programming 1	
Lesson title	Combinatorics: Splitting the numbers into sum, variations with repetitions, permutations	
Learning objectives	- Students will understand the methods of splitting the number into the sum of the k numbers, for given $k \in \mathbb{N}$. - Students will understand how to generate all the variations of the given set with repetitions. - Students will understand how to generate all the permutations of the given set. - Students will understand how to implement the methods in Python programming language. - Students will understand how to apply the algorithms in solving similar combinatorial problems.	Methodology \square Modeling X Collaborative learning \square Project based learning X Problem based learning Strategies/Activities \square Graphic Organizer \square Think/Pair/Share \square Discussion questions Assessment for
Aim of the lecture / Description of the practical problem	The aim of the lecture is to make students able to use Python in solving combinatorial problem, with visual solutions. As a practical problem, the lecturer poses several questions related to the applications of combinatorial methods in real life situations.	X Observations X Conversations \square Work sample \square Conference \square Check list
Previous knowledge assumed:	- Elementary programming skills in Python. - Basics of Combinatorics.	Assessment a
Lecture	In the introduction, we give basic examples of the usage of recursion, and the connection between recursive formula in mathematics, with application to natural problems in biology and how we solve it through computers (STEAM). As the starting example, we use Fibonacci sequence, and relate it to the golden ratio, and give an example where it can be found.	learning X Self-assessment \square Peer-assessment \square Presentation \square Graphic Organizer \square Homework

[^0]

[^1]

| $\begin{aligned} & \text { Universitatea } \\ & \text { Politehnica }\end{aligned}$
Timisoara of the European Union

```
1)
\(\mathrm{k}=3\)
\(s=4\)
sabirci = np.empty(k, int)
razbij_u_zbir(sabirci, s, k)
```

2. Next, we consider the variations with repetition of length k, of the given set of n elements, S_{n}, which is the ordered k-tuple of the elements of that set. For the set we take $\{0,1, \ldots, n-1\}$. To be able to generate all the variations with repetitions, we use the recursive description of the structure: the last element can be any element of the given set, and before this element we can put any variation with repetition of the set $\{0,1, \ldots, n-1\}$ of length $k-1$.
In Python, the following code executes the aforementioned.
```
import numpy as np
def vsp(niz, n, k):
    if k == 0:
            print(niz)
        else:
            for i in range(n):
            niz[k - 1] = i
            vsp(niz, n, k - 1)
```

$\mathrm{n}=2$
$\mathrm{k}=4$
niz = np.empty(k, int)
vsp(niz, n, k)
3. Lastly, we consider all the permutations of the given set with n elements, S_{n}, is any n-tuple of different elements from that set. We start with the set $\{0,1, \ldots, n-1\}$. To be able to go through all the permutations, we use the recursive description of this structure: the first element can be any element of the given set, after which we can place any permutation of the remaining elements. In Python, this looks as follows.

[^2][^3]

	```def zameni(niz, a, b): niz[a], niz[b] = niz[b], niz[a] def per(niz, n, m): if m == n: print(niz) else: for i in range(m, n): zameni(niz, m, i) per(niz, n, m + 1) zameni(niz, m, i) n = 4 niz = np.arange(n) per(niz, n, 0)```
Action	The demonstration of power of Python in solving the combinatorial problems and visualization.
Materials / equipment / digital tools / software	Computer, electronic whiteboard, PyCharm software

## Reflections and next steps

Reflections	Next steps
The attendance was average due to the fact	Since this approach was successfully   implemented and was well received, the next   that we were working under certain   epidemiological restrictions; the feedback   sas positive; the results of the tests show   curriculum usimplementing other parts of the strategies devised for   that the students have benefited from the   materials and equipmebt used to deliver the lecture.   lecture

References

## In Appendix:

Photographs, Lists of students, Test, questionare

[^4]
[^0]:    "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]:    "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]:    import numpy as np

[^3]:    "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^4]:    "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

