TOPIC PLAN		
Partner organization	UNS	
Topic	Definite integral	
Lesson title	Function defined by integral	
Learning objectives	Better understanding - definite integral, its definition, properties, and application for determining the area of plane objects. - the examining functions	Methodology xModeling \square Collaborative learning
Aim of the lecture / Description of the practical problem	The aim of the lecture is to enable students to examine the functions defined by the integral, using all previous calculus knowledge, with special emphasis on the application of a certain integral. Graphical representation of function defined by integral is the area. Working with functions defined by integral students have simultaneously to work with its multiple representations, algebraic, graphic and verbal. Therefore it is STEAM approach to bended learning of definite integral and its application in dynamic softer neighborhood.	\square Project based learning xProblem based learning Strategies/Activitie s \square Graphic Organizer \square Think/Pair/Share xDiscussion questions
Previous knowledge assumed:	Derivatives and antiderivaties, their calculations and applications Definite integral, definition, properties and applications	Assessment for learning xObservations
Introduction / Theoretical basics	Let the continuous function f is given on the interval [a, b]. Funcija F data sa $F(t)=\int_{c}^{t} f(x) d x, c \in[a, b] .$ $\begin{aligned} & f(x)=\sqrt{9-x^{2}}, x \in[0,3], \\ & F(t)=\int_{-3}^{t} f(x) d x \\ & F(3)=\int_{-3}^{3} f(x) d x=\frac{9 \pi}{2} \approx 14.14 \\ & F(3)=\frac{x \sqrt{9-x^{2}}}{2}+\left.\frac{9 \arcsin (x / 3)}{2}\right\|_{-3} ^{3}=9 \arcsin 1=\frac{9 \pi}{2} \\ & F(0)=\int_{-3}^{0} f(x) d x=\frac{9 \pi}{4} \approx 7.07 \\ & F(3)-F(0)=\int_{0}^{3} f(x) d x=\frac{9 \pi}{4} \approx 7.07 \end{aligned}$	xConversations xWork sample ■Conference \square Check list \square Diagnostics Assessment as learning \square Self-assessment \square Peer-assessment \square Presentation \square Graphic Organizer xHomework Assessment of learning

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	On the previous Figure drawn by GeoGebra, the function $f(x)=\sqrt{9-x^{2}}, x \in[-3,3]$ and its graph (half circle) simultaneously are consider. The function F is defined as: $F(t)=\int_{-3}^{t} f(x) d x$ The value $F(3)$ is equal to area of half circle. It is calculated, by GeoGebra as the integral of function f, from -3 to 3 . The usual calculation of definite integral, of course presented the same result. The properties of the functions defined by integral: 1. Function F is continuous over its domain. 2. $F(c)=0$. 3. $F^{\prime}(t)=f(t)$. 4. $F^{\prime \prime}(t)=f^{\prime}(t)$	xTest \square Quiz \square Presentation \square Project \square Published work
Action	Questions to students: 1) The function f is given on the interval $[-4,5]$ by its graph The function F is given by integral $F(t)=\int_{0}^{t} f(x) d x, \quad t \in[-4,5]$ a) Fulfill the table b) Determine the interval where $F(t)>0$. c) Determine the interval where $F(t)<0$. d) Determine the interval where F is increasing? e) Determine the interval where F is decreasing f) Determine an algebraic representation for f. g) Determine an algebraic representation for F. h) Determine domain of F i) Determine range of F j) Determine F^{\prime}.	

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."
k) Determine $F^{\prime \prime}$.
2) The function f is given on the interval $[-5,7]$ by its graph

The function F is given by integral

$$
F(t)=\int_{0}^{t} f(x) d x, \quad t \in[-5,7]
$$

If $P_{1}=P_{2}$ then
a) Fulfill the table

t	-5	-3	0	3	5	7
$F(t)$						

b) Determine the interval where $F(t)>0$.
c) Determine the interval where $F(t)<0$.
d) Determine the interval where F is increasing?
e) Determine the interval where F is decreasing
f) Determine an algebraic representation for f.
g) Determine an algebraic representation for F.
h) Determine domain of F
i) Determine range of F
j) Determine F^{\prime}.
k) Determine $F^{\prime \prime}$.

The_materials_are given in the references at the end from this topic plan;
Equipment: classroom, white or green board;
Digital tools: laptop, projector;
Software: GeoGebra, used for multiple representation of presented object

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

