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1 A refresher on complex numbers

The imaginaty unit. Let i denote a new “number” whose defining property is
that

i2 = −1.

It is clear that this new “number” is not an element of the reals R because a square
of any real number such as 3.9 or −1.34234543 is greater than zero, with the
exception of 0 whose square is 0. That’s why this new object is called “imaginary”:
it is a product of our imagination!

Complex numbers. Nevertheless, if we adjoin i to the reals and pretend that
everything is fine, it turns out that we can actually compute with such “quantities”!
For example,

(2− 3i) · (i− 3) = 2i− 6− 3i2 + 9i [just multiplying out]

= 2i− 6 + 3 + 9i [because i2 = −1]
= 11i− 3. [collecting like terms]

We see that new objects that we can algebraically manipulate are compound “num-
bers” consisting of a real part, the number that dangles “freely” in the sum, and
the imaginary part, the number that multiplies the imaginary unit i:

z =− 3 + 11 i
↑ ↑ ↑

real imaginary imaginary
part part unit

Re(z) Im(z)

The real part of a complex number z is denoted by Re(z), while its imaginary part
is denoted by Im(z).

Therefore, for z = −3+11i we have that Re(z) = −3 and Im(z) = 11. (Note
that Im(z) = 11, just the number 11; not 11i!)

Trigonometric representation of complex numbers. Such compound “num-
bers” are actually called complex numbers (because their structure is not simple,
but complex) and the set of all the complex numbers is

C = {a+ bi : a, b ∈ R}.

Having two components, its real and its imaginary part, complex numbers can
be represented graphically as follows:
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So, the real part of z is taken for its x-coordinate, while its imaginary part is taken
for its y-coordinate. Given r and ϕ, elementary trigonometry tells us that

a = r cosϕ and b = sinϕ.

This is the trigonometric representation of the complex number z = a+ bi.

The modulus and the argument (phase) of the complex number. The length
of the arrow leading to z is the modulus of z:

r = |z| =
√
a2 + b2

while the angle ϕ is the arguement or the phase of z:

ϕ = Arg(z) = arctan(b/a), whenever a 6= 0.

In case a = 0 we take

ϕ = Arg(z) = π/2, in case b > 0,

and
ϕ = Arg(z) = −π/2, in case b < 0.

We shall take the argument of a complex number to always belong to the inter-
val [−π/2, π/2]. Moreover, we do not define the argument of 0 = 0 + 0i because
the arrow pointing to 0 has no length, so there is no angle to measure.

Arithmetic of complex numbers. As we have seen, it is easy to compute the
sum, difference and product of complex numbers, and the corresponding formulas
are obvious:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)− (c+ di) = (a− c) + (b− d)i
(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i
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However, division of complex numbers is a bit more involved. Dividing a
complex number by a real number is straightforward:

a+ bi

c
=
a

c
+
b

c
i.

In order to explain how two complex numbers can be divided let us introduce the
new operation on complex numbers called the conjugation. For a complex number
z = a+ bi, its conjugate z is the complex number obtained by chainging the sign
of the imaginary part only:

z = a+ bi  z = a− bi.

This is how conjugation behaves graphically:

Re

Im

O

z = a+ bi
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−b
−ϕ

z = a− bi

Therefore, we see that

Re(z) = Re(z), Im(z) = −Im(z), |z| = |z|, Arg(z) = −Arg(z).

Moreover,

z · z = (a+ bi)(a− bi) = a2 − (bi)2 = a2 + b2 = |z|2,

whence follows that:
1

z
=

z

|z|2
.

This now easily leads to the division formula for complex numbers:

w

z
=
w · z
|z|2

.

As is the case when dividing “usual” numbers, these formulas make sense only in
case z 6= 0. Another way to put the division formula is:

a+ bi

c+ di
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i, when c+ di 6= 0.
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A final remark. The new “number” i was introduced so that i2 = −1. One
should never write i =

√
−1 because this is not entirely true, and may lead to

confusion. Namely, is we take the view that i =
√
−1 then we can perform the

following computation:

1 =
√

(−1) · (−1) =
√
−1 ·
√
−1 = i · i = −1.

Nonsense!
The square root of a complex number is a complicated operation. In short, we

take the square root of a complex number to be a set of values:
√
z = {w ∈ C : w2 = z}.

Therefore, √
−1 = {i,−i}.

Hence, it is simply not true that i =
√
−1. The correct statement is:

i ∈
√
−1,

and this eliminates the above contradiction.
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2 At the computer keyboard

As we have seen, complex numbers are unpleasant to compute with by hand. For-
tunately, computing technology can help us here! In this section we are going to
show how to use a computer algebra system called SageMath to help us get around.
It is important to stress that SageMath is based on Pyhton and free!

Installing SageMath. In order to download and install SageMath, go to

www.sagemath.org

and follow the installation instructions. SageMath comes bundled with Jupyter – an
interactive environment for experimenting with data and math. Once the installa-
tion is complete, search for SageMath Notebook in the list of available applications
on your computer and start it. A short introduction to Jupyter can be found at the
end of this manuscript.

Complex numbers in SageMath. SageMath is a computer algebra system which
means that it is meant to help us do algebra on a computer. Let’s try some simple
stuff:

Complex numbers in SageMath are written slightly differently than in mathematics
– the only difference is that we can use both I (the capital I) and i (the lowercase i)
for the imaginary unit, and that have to explicitly write the multiplication symbol ∗.
Because the output subsystem of SageMath prefers I as the imaginary unit, we
shall also opt for I as the imaginary unit while working in SageMath. Therefore,
we shall write:

Of course, we can use variables to name complex numbers:

and we can easily compute the modulus, and the real and imaginary parts of a
complex number:
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In order to compute the argument of a complex number we have to import a library
called cmath – complex math. It provides the method called the phase:

Note that it suffices to import cmath (or any other library) only once during the
session! Methods provided by the library will be available from that moment on.
Here’s how we can compute the conjugate of a complex number:

SageMath has a useful function list_plot which takes a list of points or com-
plex numbers and displays a plot:
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We can join the points and change the color of the plot lines:

In order to achieve a more pleasing output, let’s just close the loop:
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3 Where did complex numbers come from?

We, humans, have discovered complex numbers while trying to understand how
complicated equations are solved. Let us start with a simple equation like:

6x− 7 = 0.

This is a linear equation (in one unknown) and we know that it has a unique solu-
tion x = 7

6 . Let us now step up the game and try to solve this equation:

x2 − 6x+ 8 = 0.

This is a quadratic equation (in one unknown). Using the well-known formula for
the square of the binomial we get the following:

x2 − 6x+ 8 = 0

(x2 − 6x+ 9)− 1 = 0

(x− 3)2 = 1

whence we easily get that

x− 3 = 1 or x− 3 = −1,

so we end up with two solutions:

x1 = 4, x2 = 2.

Let’s see how SageMath solves equations. To deal with equations, we first
have to announce what are the variables that we are going to use to form equations.
Since x is typically used as a letter denoting the unknown value, we shall tell that
to SageMath like so:

We can now solve the two equations from above by calling the solve function,
which takes the following form:

solve(equation, unknown)

Since SageMath is built on Python, equations are written using ==:
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Now, let’s try to solve x2 + 2x+ 5 = 0:

We see that the solutions are complex numbers! For quite some time the math-
ematicians were puzzled by the fact that solving euqations with real coefficients
leads to solutions that are not real numbers, so we devote the following section to
a short historical overview of complex numbers popping all over the plase while
solving equations.

4 Exercises

1. Fill in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

in 1 i

Can you provide a general formula for in that depends on the divisibility of
n by 4?

2. Compute the real and the imaginary part of the following complex numbers:

2− 3i, i+ 3, −2− 5i, 5− (−3)i, 7i− 3i2.

3. Compute the conjugate of each complex numbers from the exercise above.

4. Graph the following complex numbers in the complex plane and for each of
them compute the modulus and the argument:

a = 3 + 3i, b = −4 + 4i, c = −5, d = 6i, e = 4− 4i.

O 1

Im

Re
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5. Compute by hand and using SageMath:

1− i
1 + i

,
1

1 + 1
i

,
(5− 3i)(7− 2i)

(3i− 5)(2i+ 7)

6. Using SageMath graph the following complex numbers in the complex plane
and for each of them compute the modulus and the argument:

a = 1 + 2i, b = −5 + i, e = −1− 4i.

7. Using complex arithmetic in SageMath write a Python program that draws a
regular 12-gon.

8. Solve the following equations by hand and in SageMath:

3x− 5 = 7, 1− 2x+ 5x2 = 0, x3 + x = 0.
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