TOPIC PLAN

Partner organization	Sojuz na istrazuvaci na Makedonija-SIM Skopje	
Topic	Line integrals	
Lesson title	Vector Line integrals	
Learning objectives	- Calculate a vector line integral along an oriented curve in space. - Use a line integral to compute the work done in moving an object along a curve in a vector field. - Describe the circulation of a vector field.	Strategies/Activities \square Graphic Organizer \square Think/Pair/Share V Modeling \square Collaborative learning
Aim of the lecture / Description of the practical problem	Practical problem: How would we compute the work done by vector field \vec{F} in moving a particle along C ? - We need a vector line integral.	V Discussion questions \square Project based learning VProblem based learning
		Assessment for learning
Previous knowledge assumed:	- Evaluation of integrals - Parametrization of a space curve	VObservations VConversations VWork sample \square Conference \square Check list \square Diagnostics
		Assessment as learning

[^0]

[^1]
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."
where:
a) C is the curve given with the equation:
$\vec{r}(t)=\vec{i}+t^{2} \vec{j}+t \vec{k}, \quad 0 \leq t \leq 2 ;$
b) C is the line between ($1,0,0$) and ($1,4,2$).

For

$$
\vec{r}(t)=\vec{i}+t^{2} \vec{j}+t \vec{k}
$$

we have

$$
x(t)=1, y(t)=t^{2} \mathrm{i} z(t)=t
$$

and,

$$
\begin{aligned}
& x^{2} y d x+(y-z) d y+x z d z= \\
& =1^{2} t^{2} \cdot 0 \cdot d t+\left(t^{2}-t\right) 2 t d t+1 \cdot t d t
\end{aligned}
$$

For the line integral we have:

$$
\begin{gathered}
\int_{C} x^{2} y d x+(y-z) d y+x z d z= \\
=\int_{0}^{2}\left(2 t^{3}-2 t^{2}+t\right) d t=\frac{14}{3}
\end{gathered}
$$

The line passing from $(1,0,0)$ to $(1,4,2)$ has the parametric equations:

$$
x(t)=1, y(t)=4 t \text { and } z(t)=2 t
$$

Where $0 \leq t \leq 1$ and we have:

$$
\begin{aligned}
& \quad x^{2} y d x+(y-z) d y+x z d z= \\
& =1^{2} 4 t \cdot 0 d t+(4 t-2 t) 4 d t+2 t \cdot 2 d t \\
& \text { the line integral we got: }
\end{aligned}
$$

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]$$
\vec{r}(t)=t^{2} \vec{i}+t \vec{j}+t^{4} \vec{k}, \quad 0 \leq t \leq 1
$$

We have:

$$
\begin{gathered}
W=\int_{C} \vec{F} \cdot d \vec{r}(t) \\
=\int_{0}^{1}(y z \vec{i}+x y \vec{j}+x z \vec{k}) \cdot\left(2 t \vec{i}+\vec{j}+4 t^{3} \vec{k}\right) d t \\
=\int_{0}^{1}\left(t^{5} \cdot 2 t+t^{3}+t^{6} \cdot 4 t^{3}\right) d t=\frac{131}{140} .
\end{gathered}
$$

Line integrals as circulation. The vector line integral explains how the line integral of a vector field \vec{F} over an oriented curve C "adds up" the component of the vector field that is tangent to the curve. In this sense, the line integral measures how much the vector field is aligned with the curve. If the curve C is a closed curve, then the line integral indicates how much the vector field tends to circulate around the curve C : In fact, for an oriented closed curve C; we call the line integral the "circulation" of \vec{F} around C , see the following figure:

$$
\oint_{C} \vec{F} \cdot d \vec{r}(t)=\text { circulation of } \vec{F} \text { over } C .
$$

[^3]| | Example. Find the circulation of the vector field $\vec{F}=y \vec{i}-x \vec{j}$
 over the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
 First we represent the ellipse with its parametric equations: $\vec{r}(t)=2 \cos t \vec{i}+3 \sin t \vec{j} 0 \leq t \leq 2 \pi .$
 Next, we have: $\oint_{C} \vec{F} \cdot d \vec{r}(t)=$ |
| :---: | :---: |

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	$\begin{aligned} & =\int_{0}^{2 \pi}(y \vec{i}-x \vec{j}) \cdot(-2 \sin t \vec{i}+3 \cos t \vec{j}) d t= \\ & =\int_{0}^{2 \pi}(3 \sin t \vec{i}-2 \cos t \vec{j}) \cdot(-2 \sin t \vec{i}+3 \cos t \vec{j}) d t \\ & =\int_{0}^{2 \pi}\left(-6 \sin ^{2} t-6 \cos ^{t}\right)=-12 \pi . \end{aligned}$		
Materials / equipment / digital tools / software	The materials for learning are given as a part of references of the end from this topic plan; Equipment: classroom, green board, chalk in different colours; Digital tools: laptop, projector, smart board; Software: Mathematica.		
Consolidation	- Use of materials, equipment, digital tools, software by teachers and students; - The teacher's discussion with the students through appropriate questions; - Independent solving of simple tasks by the students under the supervision of the teacher; - Given of examples by the teacher for introducing a new concept in a cooperation and a discussion with the students; - Assignment of homework by the teacher with a time limit until the next class.		
Reflections and next steps			
Activities that worked Parts to be revisited			
After the class, the teacher according to his personal perceptions regarding the success of the class fills in this part.		Through the success of the homework done by the students, questions and discussion at the beginning of the next class, the teacher comes to the conclusion which parts of this class should be revised.	
References			

[1] R. Wrede, M. Spiegel: Schaum's Outline of Advanced Calculus, Third Edition, Schaum's Edition, 2010, McGraw-Hill Companies, Inc.

[^4]Co-funded by the Erasmus+ Programme of the European Union
[2] Frederic P. Miller, Agnes F. Vandome, John McBrewster: Line Integral, 2009, VDM Publishing.
[3] T. M. Apostol: Vector analysis, line integrals, and surface integrals, 1960, California Institute of Technology.
[4] https://tutorial.math.lamar.edu/classes/calciii/LinelntegralsPtI.aspx
[5] https://tutorial.math.lamar.edu/classes/calciii/LinelntegralsPtII.aspx
[6] https://math.libretexts.org/

[^5]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^4]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^5]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

