TOPIC PLAN

Partner organization	Sojuz na istrazuvaci na Makedonija-SIM Skopje	
Topic	Line integrals	
Lesson title	Scalar Line integrals	
Learning objectives	- Calculate a scalar line integral along a curve. - Use a line integral to compute the length of a curve. - Use a line integral to calculate the mass of a wire.	Strategies/Activities \square Graphic Organizer \square Think/Pair/Share V Modeling V Collaborative learning
Aim of the lecture / Description of the practical problem	Practical problem: Calculate the mass of a spring in the shape of a curve parameterized by $\begin{aligned} & \vec{r}(t)=t \vec{i}+2 \cos t \vec{j}+2 \sin t \vec{k} \\ & 0 \leq t \leq \frac{\pi}{2}, \text { with a density function given by } \\ & \rho(x, y, z)=e^{x}+y z \end{aligned}$	\square Discussion questions \square Project based learning VProblem based learning Assessment for learning
Previous knowledge assumed:	- Evaluation of integrals - Parametrization of a plane curve - Parametrization of a space curve	VObservations ∇ Conversations ∇ Work sample \square Conference \square Check list \square Diagnostics Assessment as learning

[^0]Introduction /
Theoretical
basics

Scalar line integrals.

This type of integral we also call it line integral of f with respect to arc length.
For a formal description of a scalar line integral, let C be a smooth curve in space given by the
parameterization:

$$
\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}, \quad a \leq t \leq b
$$

Let

$$
f=f(x, y, z)
$$

be a function with a domain that includes curve
C : To define the integral we begin as most definitions of an integral begin: we chop the curve into small pieces.

Partition the parameter interval $[\mathrm{a}, \mathrm{b}]$ into n subintervals $\left[t_{i}, t_{i+1}\right]$ where $t_{0}=a$ and $t_{n}=b$. Let t_{i}^{*} be a value in the subinterval $\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right]$. We denote the endpoints

$$
\vec{r}\left(t_{0}\right), \vec{r}\left(t_{1}\right), \ldots, \vec{r}\left(t_{n}\right)
$$

with $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots \mathrm{P}_{\mathrm{n}}$, see the figure below.

Points P_{i} divide the curve C into pieces $\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots \mathrm{C}_{\mathrm{n}}$, with length:

$$
\triangle s_{0}, \triangle s_{1}, \ldots, \triangle s_{n}
$$

At the end, we evaluate the function for the point $P_{i}{ }^{*}$, multiply with $\Delta \mathrm{s}_{\mathrm{i}}$ and sum for $1 \leq i \leq n$.

Definition. Let f be a function with a domain that includes the smooth curve C that is parameterized by

VSelf-assessment
\square Peer-assessment \square Presentation
\square Graphic Organizer
\square Homework

Assessment of learning
VTest
『Quiz
\square Presentation
\square Project
\square Published work
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."
following properties:
\[

$$
\begin{aligned}
& \int_{C} k f(x, y, z) d s=k \int_{C} f(x, y, z) d s \\
& \int_{C}(f \pm g)(x, y, z) d s=\int_{C} f(x, y, z) d s \pm \int_{C} g(x, y, z) d s
\end{aligned}
$$
\]

Since $\Delta \mathrm{s}_{\mathrm{i}}>0$, when we swich the direction of the curve, in the line integral will not change.
$\int_{C} f(x, y, z) d s=\int_{-C} f(x, y, z) d s$.
Evaluation of the integral over a piecewise smooth curve is a simple thing to do. We evaluate the integral over each pieces, and then add them up. We have:

$$
\int_{C} f(x, y, z) d s=\int_{C_{1}} f(x, y, z) d s+\int_{C_{2}} f(x, y, z) d s
$$

Application.

Question to the students:

- Are you familiar with any application of the scalar line integral?
Discussion with the students.
They can be used to calculate the length or mass of a wire, the surface area of a sheet of a given height, or the electric potential of a charged wire given a linear charge density.

A mass of a wire.

Suppose that a piece of wire is modeled by curve C in space. The mass per unit length (the linear density) of the wire is a continuous function

$$
\rho(x, y, z)
$$

We can calculate the total mass of the wire using the scalar line integral

$$
\int_{C} \rho(x, y, z) d s
$$

Now, at the end of this class we give the solution of the opening problem calculating the mass of a spring in the shape of a parameterized curve.
We have:
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	$\begin{aligned} & \int_{C} \rho(x, y, z) d s= \\ & \int_{0}^{\pi / 2}\left(e^{x}+y z\right) \sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)} d t= \\ & \int_{0}^{\pi / 2}\left(e^{t}+4 \sin t \cos t\right) \sqrt{1^{2}+(-2 \sin t)^{2}+(2 \cos t)^{2}} d t= \\ & \sqrt{5} \int_{0}^{\pi / 2}\left(e^{t}+4 \sin t \cos t\right) d t=\sqrt{5}\left(e^{\pi / 2}+1\right) \end{aligned}$		
Materials / equipment / digital tools/ software	The materials for learning are give references of the end from this top Equipment: classroom, green boa colours; Digital tools: laptop, projector, sm Software: Mathematica.	n as a part of ic plan; rd, chalk in different art board;	
Consolidation	- Use of materials, equipme students; - The teacher's discussion questions; - Independent solving of sim supervision of the teacher - Given of examples by the cooperation and a discus - Assignment of homework class.	nt, digital tools, softw with the students throu ple tasks by the stud eacher for introducin ion with the students by the teacher with a	re by teachers and gh appropriate nts under the a new concept in a time limit until the next
Reflections and next steps			
Activities that worked		Parts to be revisited	
After the class, the teacher according to his personal perceptions regarding the success of the class fills in this part.		Through the success of the homework done by the students, questions and discussion at the beginning of the next class, the teacher comes to the conclusion which parts of this class should be revised.	
References			

[^2][1] R. Wrede, M. Spiegel: Schaum's Outline of Advanced Calculus, Third Edition, Schaum's Edition, 2010, McGraw-Hill Companies, Inc.
[2] Frederic P. Miller, Agnes F. Vandome, John McBrewster: Line Integral, 2009, VDM Publishing. [3] T. M. Apostol: Vector analysis, line integrals, and surface integrals, 1960, California Institute of Technology.
[4] https://tutorial.math.lamar.edu/classes/calciii/LinelntegralsPtl.aspx
[5] https://tutorial.math.lamar.edu/classes/calciii/LineIntegralsPtII.aspx
[6] https://math.libretexts.org/

[^3]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

