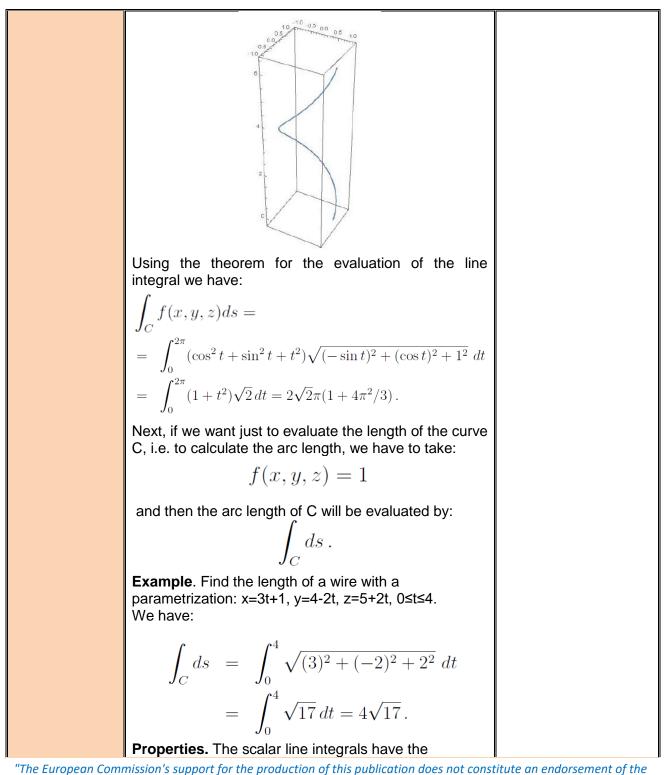


Co-funded by the Erasmus+ Programme of the European Union

TOPIC PLAN			
Partner	Sojuz na istrazuvaci na Makedonija-SIM Skopje		
organization			
Topic	Line integrals		
Lesson title	Scalar Line integrals	1	
Learning objectives	 Calculate a scalar line integral along a curve. Use a line integral to compute the length of a curve. Use a line integral to calculate the mass of a wire. 	Strategies/Activities □Graphic Organizer □Think/Pair/Share ☑ Modeling ☑ Collaborative learning ☑ Discussion questions □Project based learning ☑Problem based learning	
Aim of the lecture / Description of the practical problem	Practical problem: Calculate the mass of a spring in the shape of a curve parameterized by $\vec{r}(t) = t\vec{i} + 2\cos t\vec{j} + 2\sin t\vec{k}$ $0 \le t \le \frac{\pi}{2}$, with a density function given by $\rho(x, y, z) = e^x + yz$		
Previous knowledge assumed:	 Evaluation of integrals Parametrization of a plane curve Parametrization of a space curve 	Assessment for learning Observations Conversations Work sample Conference Check list Diagnostics Assessment as	
		learning	

Introduction /	Scalar line integrals.	✓Self-assessment				
Theoretical	This type of integral we also call it line integral of f with	□Peer-assessment				
basics	respect to arc length.	□Presentation				
	For a formal description of a scalar line integral, let C	□Graphic Organizer				
	be a smooth curve in space given by the					
	parameterization:					
	$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, a \le t \le b.$					
	Let	Assessment of				
	f = f(x, y, z)	learning				
		⊠Test				
	be a function with a domain that includes curve	⊠Quiz				
	C: To define the integral we begin as most definitions of an integral begin: we chop the curve into small					
	pieces.					
		□Project				
	Partition the parameter interval [a,b] into n subintervals	□Published work				
	$[t_i, t_{i+1}]$ where $t_0=a$ and $t_n=b$. Let t_i^* be a value in the					
	subinterval $[t_i, t_{i+1}]$. We denote the endpoints					
	$\vec{r}(t_0), \vec{r}(t_1), \dots, \vec{r}(t_n)$					
	$T(t_0), T(t_1), \dots, T(t_n)$					
	with $P_0, P_1, \dots P_n$, see the figure below.					
	У 4					
	Δs_n					
	$\Delta S_i \Delta S_{i+1} P_n$					
	P_{n-1}					
	P_1 P_1					
	Δs_1 P_i P_{i+1} P_{i+1}					
	P					
	X					
	Points P_i divide the curve C into pieces $C_0, C_1, \dots C_n$,					
	with length:					
	$\Delta s_0, \Delta s_1, \ldots, \Delta s_n.$					
	$\Delta s_0, \Delta s_1, \dots, \Delta s_n.$					
	At the end we evaluate the function for the point D*					
	At the end, we evaluate the function for the point P_i^* ,					
	multiply with Δs _i and sum for 1≤i≤n.					
	Definition . Let f be a function with a domain that					
	includes the smooth curve C that is parameterized by					
		<u>µ</u>				



	$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, a \le t \le b.$			
	The scalar line integral of f along C is:			
	$\int_C f(x,y,z) ds = \lim_{n \to \infty} \sum_{i=1}^n f(P_i^*) \triangle s_i ,$ if this limit exists, and P _i * and Δs_i are defined as before.			
Action	Questions to students:			
	 How to calculate the new defined integrals? 			
	 How can we connect the length of a given integral with the scalar line integral over the 			
	same curve?			
	The question about how to evaluate the scalar line			
	integral gives the following theorem. Theorem. Let f be a continuous function with a			
	domain that includes the smooth curve C with			
	parameterization:			
	$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, a \le t \le b.$			
	Then			
	$\int_C f(x, y, z) ds =$			
	$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt.$			
	Example. Find			
	$\int_C (x^2 + y^2 + z^2) ds$			
	where C is given by x=cost, y=sint, z=t for $0 \le t \le 2\pi$ from			
	$(1,0,0)$ to $(1,0,2\pi)$. The curve we are about to integrate on is given on the			
	following figure:			

	I
following properties:	
$\int_C kf(x,y,z)ds = k \int_C f(x,y,z)ds,$	
$\int_C (f \pm g)(x, y, z) ds = \int_C f(x, y, z) ds \pm \int_C g(x, y, z) ds$	
Since $\Delta s_i > 0$, when we swich the direction of the curve, in the line integral will not change. $\int f(x, y, z) dz = \int f(x, y, z) dz$	
$\int_C f(x, y, z) ds = \int_{-C} f(x, y, z) ds.$	
Evaluation of the integral over a piecewise smooth curve is a simple thing to do. We evaluate the integral over each pieces, and then add them up. We have:	
$\int_{C} f(x, y, z) ds = \int_{C_1} f(x, y, z) ds + \int_{C_2} f(x, y, z) ds .$	
Application.	
Question to the students:	
 Are you familiar with any application of the scalar line integral? 	
Discussion with the students.	
They can be used to calculate the length or mass of a wire, the surface area of a sheet of a given height, or	
the electric potential of a charged wire given a linear charge density.	
A mass of a wire.	
Suppose that a piece of wire is modeled by curve C in space. The mass per unit length (the linear density) of the wire is a continuous function	
$\rho(x,y,z).$	
We can calculate the total mass of the wire using the scalar line integral	
$\int_C ho(x,y,z) ds$.	
Now, at the end of this class we give the solution of the opening problem calculating the mass of a spring in the shape of a parameterized curve. We have:	

	$\int_{C} \rho(x, y, z) ds =$ $\int_{0}^{\pi/2} (e^{x} + yz) \sqrt{x'^{2}(t) + y'^{2}(t) + z}$ $\int_{0}^{\pi/2} (e^{t} + 4\sin t\cos t) \sqrt{1^{2} + (-2s)}$ $\sqrt{5} \int_{0}^{\pi/2} (e^{t} + 4\sin t\cos t) dt = \sqrt{5} (e^{t} + 4\sin t\cos t) dt =$	$(e^{\pi/2}+1)$.		
Materials / equipment / digital tools / software	<u>The materials for learning</u> are given as a part of references of the end from this topic plan; <u>Equipment</u> : classroom, green board, chalk in different colours; <u>Digital tools</u> : laptop, projector, smart board; <u>Software</u> : Mathematica.			
Consolidation	 Use of materials, equipment, digital tools, software by teachers and students; The teacher's discussion with the students through appropriate questions; Independent solving of simple tasks by the students under the supervision of the teacher; Given of examples by the teacher for introducing a new concept in a cooperation and a discussion with the students; Assignment of homework by the teacher with a time limit until the next class. 			
Reflections and next steps				
Activities that w		Parts to be revisited		
After the class, the teacher according to his personal perceptions regarding the success of the class fills in this part.		Through the success of the homework done by the students, questions and discussion at the beginning of the next class, the teacher comes to the conclusion which parts of this class should be revised.		
References				

[1] R. Wrede, M. Spiegel: Schaum's Outline of Advanced Calculus, Third Edition, Schaum's Edition, 2010, McGraw-Hill Companies, Inc.

[2] Frederic P. Miller, Agnes F. Vandome, John McBrewster: Line Integral, 2009, VDM Publishing.
 [3] T. M. Apostol: Vector analysis, line integrals, and surface integrals, 1960, California Institute of Technology.

[4] https://tutorial.math.lamar.edu/classes/calciii/LineIntegralsPtl.aspx

- [5] https://tutorial.math.lamar.edu/classes/calciii/LineIntegralsPtII.aspx
- [6] https://math.libretexts.org/