PROJECT TITLE: Mathematics of the Future: Understanding and Application of Mathematics with the help of Technology, FutureMath
Programme: Erasmus+
Key Action:
Action Type:
Cooperation for innovation and the exchange of good practices
Strategic Partnerships for higher education
Ref. No.:
2020-1-RS01-KA203-065388

Intellectual Output 1: Analysis report on state of art in using technologies to support teaching in Mathematics after Covid-19 crisis

Result:
Suggested Calculus topics on which the new teaching methodology will be developed

Prepared by UNS, BMU, UPT, SIM, GDU,

[^0]| TOPIC PLAN | | |
| :---: | :---: | :---: |
| Partner organization | UNS | |
| Topic | Definite integral | |
| Lesson title | The introduction of definite integral | |
| Learning objectives | Work with definite integrals and its application for determining the area of plane objects. | Methodology
 xModeling
 \square Collaborative learning
 \square Project based learning
 xProblem based
 learning |
| Aim of the lecture / Description of the practical problem | The aim of the lecture is the evaluation of area curvilinear trapezoid over the interval [a, b].
 Fig. 1 | Strategies/Activities
 \square Graphic Organizer
 \square Think/Pair/Share
 xDiscussion questions
 Assessment for learning
 xObservations
 xConversations
 xWork sample |

[^1]| Previous
 knowledge
 assumed: |
| :--- |
| |
| |
| |
| Introduction /
 Theoretical
 basics |

Derivatives and antiderivaties, their calculations and applications

Let the continuous function f is given on the interval $[a, b]$. Let us divide the interval $[a, b]$ on n subintervals such that

$$
a=x_{0}<x_{1}<x_{2}<x_{3}<\cdots<x_{n-1}<x_{n}=b .
$$

Let us denote the length of i - interval with

$$
\begin{gathered}
\Delta x_{i}=x_{i}-x_{i-1}, \quad i=1,2, \ldots, n, \\
\Delta x=\max _{i} \Delta x_{i} .
\end{gathered}
$$

Let c_{i} be the points from $\left[x_{i-1} x_{i}\right], i=1,2, \ldots, n$. If the limit

$$
\lim _{\substack{n \rightarrow \infty \\ \Delta x \rightarrow 0}} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

exists for each division of interval $[a, b]$ and every choice of n points $c_{i} \in\left[x_{i-1} x_{i}\right]$, then it defines the definite or Riman integral of the function f on the interval $[a, b]$, i.e.,

$$
\lim _{\substack{n \rightarrow \infty \\ \Delta x \rightarrow 0}} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}:=\int_{a}^{b} f(x) d x,
$$

1) If $f(x)>0$, then $\int_{a}^{b} f(x) d x$, represent the area of curvilinear trapezoid under the graph of f over the interval $[0,1]$.
2) If $f(x)<0$, then $\left|\int_{a}^{b} f(x) d x\right|$ represent the area of curvilinear trapezoid under the graph of f over the interval $[0,1]$.

Conference
 \square Check list
 \square Diagnostics

Assessment as learning
\square Self-assessment
\square Peer-assessment
\square Presentation
\square Graphic Organizer
xHomework

Assessment of learning
xTest
\square Quiz
\square Presentation
\square Project
\square Published work

[^2]| Action | Questions to students:
 3) The function $f(x)=x^{2}$, is given. Determine the area of the inscribed and prescribed rectangle in, and over, curvilinear trapezoid over the interval $[0,1]$
 4) The function $f(x)=x^{2}$, is given. The interval $[0,1]$ is divided in 4 subintervals Determine the area of the sum of inscribed and sum of prescribed rectangles in, and over, curvilinear trapezoid over the subinterval of interval $[0,1]$.
 5) The function $f(x)=x^{2}$, is given. The interval $[0,1]$ is divided in 5 subintervals Determine the area of the sum of inscribed and sum of prescribed rectangles in, and over, curvilinear trapezoid over the subinterval of interval $[0,1]$.
 6) The function $f(x)=x^{2}$, is given. The interval $[0,1]$ is divided in 10 subintervals Determine the area of the sum of inscribed and sum of prescribed rectangles in, and over, curvilinear trapezoid over the subinterval of interval $[0,1]$.
 7) Analyze the obtained results | |
| :---: | :---: | :---: |
| Materials / equipment / digital tools / software | The_materials_are given in the references given at the end from this topic plan; Equipment: classroom, green board; Digital tools: laptop, projector; Software: GeoGebra, used for multiple representation of presented object | |
| Consolidation | - The teachers and the students use: teach equipment, digital tools, GeoGebra softw
 - The teacher's and students' discussion conflicts that appear;
 - Independent solving of simple tasks by th supervision of the teacher;
 - Given of examples by the teacher for intr a cooperation and a discussion with the s
 - Assignment of homework by the teacher next class. | ing materials, are; bout the cognitive
 e students under the
 ducing a new concept in tudents; with a time limit until the |

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Activities that worked
The teacher should fulfilled this part after the class

Parts to be revisited

The definition of definite integral and its application for determining the area, will be revised, after the overview of the students' homework and discussion at the beginning of the next class, in the form that should be necessary.

References

1) Bittinger, M. L., Ellenbogen, D. J., Surgent, S.A., (2012)"Calculus and its applications", Addison-Wesley.
2) Schmeelk, J., Takaci, D., Takaci, A., (2013) Elementary analysis through examples and exercises, Kluwer, Springer Science \& Business Media.
3) Stewart J., (2006) Calculus, Thomson Learning, China.
4) Takači, Dj., Stankov, G., Milanovic, I. (2015). Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups,. Computers and Education, Vol. 82, 421-431
5) The film Definition of definite integral can be found on the platform https://cloud.pmf.uns.ac.rs/s/pQXwNsPD3GtcyEZ
[^3]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

